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A direct high-temperature star graph expansion for the 
fourth-field derivative of the Ising free energy 

S McKenzie 
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WCZR 2LS, UK 

Received 2 October 1978, in final form 9 July 1979 

Abstract. It is shown that the fourth-field derivative, xf’, of the free energy of the king 
model above the critical temperature can be expressed as an expansion in terms of 
two-connected graphs or stars. The contribution of any star graph to the expansion is 
expressed in terms of the weak lattice constant of the graph, and a weight, the latter being a 
property of the star graph only. The method is used to derive series expansions for xi2’ on 
the four-dimensional hyper-simple cubic, hyper-body-centred cubic and hyper-face- 
centred cubic lattices to order 16, 11 and 9 respectively. 

1. Introduction 

The existence of star graph expansions for the zero-field Ising partition function and the 
reciprocal of the zero-field susceptibility (xi’) is well known (Domb and Hiley 1962, 
Rapaport 1974, McKenzie 1975a, b). The existence of star graph expansions for 
higher-field derivatives has been demonstrated (Domb 1974). We show that, in the 
limit H + 0, 

where Z is the partition function of the Ising model, and p is the density of overturned 
spins; U (=tanh(J/kT)) is the usual high-temperature variable, and H is the magnetic 
field. We also show that, €or a lattice 9, (1.1) can be expressed in the form 

d31n Z / d p 3  l p = 1 / 2  = 1 (G;  2) WC(U) .  (1.2) 
G 

The sum runs over all star graphs G. Also included in the set are the isolated vertex and 
the bond. (G; 2’) is the weak lattice constant of G on 2, defined per site. WG(U) is the 
weight of G, and is a function of v. 

To derive an exact series expansion for (1.2), correct to order u n ,  one has to consider 
all star graphs G with up to II edges. For each G, one expands WG(u) as a power series 
in U and retains terms to order U”. Substitution in (1.2) gives the required series. 
Equation (1.2) applies to finite clusters as well as to infinite lattices. Thus WG(v) for a 
finite star cluster, G, can be calculated by applying (1.1) and (1.2) to G and subtracting 
off the weights of all star subgraphs of G. 
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For inhomogeneous clusters, namely those whose vertices are not all equivalent 
from considerations of symmetry, the calculation of WG(v)  is complicated by the fact 
that the different classes of vertex have different overturned spin densities p ,  associated 
with them. This distinction has to be preserved until one has calculated (1.2) for the 
cluster. One then takes the high-temperature limit of H + 0 and pi + for all i. In 
practice it is simpler to treat all the vertices of the cluster as being distinct. 

In a recent study, Baker (1977) derived the fourth-field derivative series for the 
cubic lattices to order v 9  in arbitrary dimension d. The method used was that of 
Rushbrooke and Scoins (1 962), which involves the calculation of the low-temperature 
partition function in a field (as a series in the magnetisation variable), followed by 
differentiation and transformation to high-temperature variables. Using this series, 
together with a revised estimate for the exponent v pertaining to the correlation length 
5, Baker obtained, for d = 4, 

2A- dv - = -0.302 i 0.038. (1.3) 

This result is in conflict with the renormalisation group (RG) approach (see e.g., BrCzin 
et a1 1976), which assumes the hyperscaling relation 

2 A - d ~  - y = O  (1.4) 

for 2 S d  G4. Also, RG calculations predict, in four dimensions, the existence of 
confluent logarithmic terms modifying the dominant algebraic singularities in ,yo, 6 and 
xo * 

Gaunt et a1 (1979) investigated the presence of logarithmic terms in the xo and xb2’ 
series for the hyper-simple cubic (HSC) lattice in four dimensions. Using 17-term 
expansions, they concluded that the series data were consistent with the presence of 
logarithmic correction terms. Their analysis was confined to the HSC lattice. 

We have used the direct high-temperature star graph expansion method to calculate 
series expansions for xd”/x,“ for the four-dimensional HSC, hyper-body-centred cubic 
(HBCC) and hyper-face-centred cubic (HFCC) lattices to order 16, 11 and 9 respectively. 
Our series for the HSC lattice are in agreement with Gaunt et a1 (1979). The series for 
the other two lattices are new. 

The advantages of the star graph method as implemented here are twofold. Greater 
flexibility is achieved by separating the problem into two parts, namely the deter- 
mination of star lattice constants (see e.g. Martin 1974), and the calculation of weights 
(see equation (1.2)). The lattice constant data can be used to derive series expansions 
for other properties, such as specific heat, self-avoiding walks and susceptibility, by 
using different sets of weights. The weights WG(U)  depend only on the graphs G, and 
can be used to derive series on any lattice. 

The other advantage of this method is that it is not necessary to retain the field 
variable, in explicit form, throughout the calculation. By eliminating it at an earlier 
stage, one is able to derive longer series than would otherwise be possible. The method 
in this form is admittedly not capable of yielding the complete expansion for the free 
energy in a field (Baker 1977, Sykes et a1 1973), but for purposes of estimating the 
exponent A, the fourth-field derivative xb” is adequate. 

In the next two sections, we show the validity of equation ( l . l ) ,  and discuss briefly 
the procedure for calculating WG(v)  for any star cluster G. The series coefficients, 
together with results of series extrapolation, are presented in McKenzie and Gaunt 
(1980), the accompanying paper. 

(2) 
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2. Density expansion for the Ising model 

The work of Rushbrooke and Scoins (1955) and Domb and Hiley (1962) has shown that 
the partition function of the Ising model can be expressed as a series expansion in the 
variables p (the density of overturned spins) and U ( =  exp (-4JIkT)). In this form, the 
expansion is analogous to the virial expansion for the imperfect gas. The coefficients of 
the series are made up of contributions from star graphs alone. Thus there exists a star 
graph expansion for 

ln Z ( P ,  U), (2.1) 

where 

p = p aln Z / a p  

and 

p = exp (-2mHlkT). 

It then follows that all derivatives of I n 2  with respect to p have star graph 
expansions. At temperatures above the critical point (T > Tc), the partition function 
per spin can be written down as (Domb 1974) 

lnZ=ln2+(q /2 )1n  (1+u)- ln(1+. r )+ ln[ l+X" '  + T ~ x ( ~ '  + T ~ x ( ~ )  +. . .], (2.3) 

d!" represents the sum of weak lattice constants per site of all graphs with 1 edges and r 
vertices of odd degree. q is the coordination number of the lattice. 

The overturned spin density p is defined as 

p = --[(I - ~ ~ ) / 2 ] a  In z / ~ T .  (2.6) 

Denoting the expression in square brackets in (2.3) by F, and defining 

arF/aTr 1 = ~ ( r ) ,  
T = O  

it can be shown that, in the limit T + 0, 

(2.7) 

a In Z / ~ T  = - 1, 

a3 In z / ~ T ~  = -2, 

From (2.2), (2.4), (2.6) and (2.8), we see that H + 0 implies p + 1, T + 0 and p + 3. 

a2 In Z / a T 2  = 1 + F'2'/F'o', 
(2.8) a4 In Z/h4 = 6 - 3 (Fi2) /Fio ' )2  + F'4'/F'0). 
1 

From (2.6), it follows that 

(2.9) 
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Also, in the limit 7 + 0, p +- $, 

(2.10) 

Equation (2.10) applies to finite homogeneous clusters as well as to infinite regular 
lattices. For finite clusters, it is more convenient to define the Xir' in (2.5) in terms of 
total number of embeddings, rather than lattice comtants per site. Using this definition 
and making the necessary modifications to (2.3) and (2.8), we obtain, for a cluster with 
N sites, 

a3 In z - 2 - (3/N)(F'2'/Fio')2 - (8/N)(F(2'/Fio') + ( ~ / A ~ F ' ~ ) / F ' " ) )  
[ 1 + (1 / N)F'2'/Fio' l4 . (2.11) -- - -8 

JP3 

From (2.3) and (2.7), it can be seen that 

(2.12) 

where the dj" now represent the total number of embeddings, not lattice constants per 
site. Thus (2.11) can be calculated for a cluster G, from a knowledge of its subgraphs 
with zero, two and four odd vertices. Substitution of (2.12) in (2.11) gives a3 In Z / d p 3 .  
Use of (1.2) gives WG(v).  We shall now consider the examples of the isolated vertex ( e )  

and the bond ( I ) .  For the former, F'O' is simply one, and F'2' and Fi4' are both zero. 
Substitution in (2.11) gives 

- Q a 3 l n z / a p 3 =  -2, (2.13) 

which is also the weight of the isolated vertex. 
For the bond, it can be seen that 

F'O' = 1, Fi2' = 2v, Fi4' = 0, (2.14) 

Substitution in (2.11) gives 

-i a3 In Z / a p 3  = - 2 ( 1 + 3 ~ ) / ( 1  + u ) ~ .  (2.15) 

Expanding (2.15) as a power series in U, we obtain 

-: a3 In Z / a p 3  = -2(1 -3e2+8v3  - 15v4+24u5+ .  . .) 
= - 2 + i W ( f f .  (2.16) 

Subtracting off the weight of ( - ), we obtain the weight series for the bond, which is 

W ( 1 ) = - 4 ( - 3 ~ ~ + 8 2 ; ~ - 1 5 ~ ~ + 2 4 ~ ~ .  . . ) .  (2.17) 

For the square (p4), equation (2.11) gives 

-Qa3 1nZ/dp3=-2(1-6v2+16v3-48u4+144u5).  (2.18) 

Subtracting off the contributions due to the vertex and the bond, we derive 

W(p4)=144v4-768v5+.  . . . (2.19) 
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It can be verified that substitution of (2.13), (2.17) and (2.19) in (1.2), with 
appropriate lattice constants, gives the (a4 In Z / a H 4 ) / ~ i  series correct to order u s  for 
any cubic lattice. 

3. Finite inhomogeneous clusters 

The calculation of a3 In Z / a p 3  for inhomogeneous clusters is complicated by the fact 
that one has to work with a set of pi's, one for each class of site (Domb and Hiley 1962). 
In practice, it is simpler to treat all sites of the cluster as being distinct. Thus for a 
cluster G with R sites, the partition function takes the form 

(3.1) 

where 4; denotes the set ( T ' ,  T ~ .  . . T ~ ) .  The overturned spin densities are defined by 
- 

for i = 1 to R. (3.2) 1 2 pi = - ~ ( l -  T ;  )a In Z/a~i  

It now follows that 

a api a 
i = 1 a~~ ap, 

-= C -- 
a ~ ,  

We define a matrix A, whose elements aij are given by 

(3.3) 

aij  = apj/dTi. (3.4) 
We also define the matrix B (  = A-'),  with elements bij, and write 

a/api - = Ba/aTi, - (3.5) 
where a/api and a/ari are R-component vectors. It then follows that - - 

Denoting bi, by B,, the operation a/ap can be replaced by 

(3.7) 

It can then be shown that, in the limit pi + $R, ri + 0, for i = 1 to R, 

aB. a' In z aBj aBi a ln z a3 In z -- - E (Bk2B;-  +Bk-- -  + BkBjBi 
a 3 i n z  R 

dp3 i , j , k = l  aTk aTi aTk a7j 87; dT; aTj aTk 

Since we are only interested in deriving a series expansion and not a closed-form 
expression for (3.8) we can calculate B by using 

B =A-' -  2 E (-1)' C", (3.9) 
n 2 0  

where C = 2A -I .  The elements of A,  B and C are polynomials in U and T.  If (3.9) is 



1012 S McKenzie 

truncated at n = N, the expansion for B will be correct to order uN.  The factor of 2 in 
(3.9) is omitted in our subsequent treatment. It can be re-introduced at the end. 

Using (3.9), it can be shown that 

dB/ar, = -B C,B (3.10) 

and 

a2B/a7, 87, = -BC,,B f BC,BC,B + BC,BC,B, 

where C, is a matrix whose elements are obtained by differentiation with respect to 7, of 
the corresponding elements of C. C,, is similarly defined. 

From (3.2) and (3.4) it can be shown that, in the zero-field limit, 

aB/ari = 0 ,  a2B/aTi a ri = - BC~,B. 

Thus (3.8) takes the form 

(3.11) 

(3.12) 

where lT and 1 are R-component row and column vectors, all of whose elements are 
unity. 

All the terms in (3.12) except for C,, can be calculated from the matrix A after 
imposing the zero-field limit. It can be seen that 

U,, = -zR, 1 a,, = -( 1 / 2 R ) F y F ( O ) ,  (3.13) 

where F”” = d!‘” 21’. The term dit’’ denotes the number of subgraphs of G with 1 
edges and odd vertices i and j .  To calculate C,k, one has to differentiate the elements of 
C before imposing the zero-field limit. It can be shown that the elements of c , k  can be 
expressed in terms of subgraphs of G with 0, 2 and 4 odd vertices. Having calculated 
a3 In z / a p 3 ,  one can write, for the cluster G, 

d3 In Z / a p 3  = ( l / N )  c (G’; G) WG,(U), (3.14) 

where the sum is over all star subgraphs G‘ of G, including G itself. (G‘; G) is the 
number of distinct embeddings of G’ on G. Knowing the weights of all the star 
subgraphs of G, one can calculate W G ( u )  by using (3.14). 

By considering all star graphs with up to n edges that can be embedded on a given 
lattice, and using (1.2), we obtain ,yb”/,y: to order un.  We have thus derived series 
expansions for the HSC, HBCC and HFCC lattices to order 16, 11 and 9 respectively. The 
coefficients for the HSC lattice are in agreement with Gaunt et a1 (1979). Those for the 
HBCC and HFCC lattices are new. Results of analysis of the series and a study 
of hyperscaling in four dimensions (on all three lattices) form the subject of an 
accompanying paper (McKenzie and Gaunt 1980). 

G’ 
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